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Pseudospectral approach to inverse problems in interface dynamics
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An improved scheme for computing coupling parameters of the Kardar-Parisi-Zhang equation from a col-
lection of successive interface profiles is presented. The approach hinges on a spectral representation of this
equation. An appropriate discretization based on a Fourier representation is discussed as a by-product of the
above scheme. Our method is first tested on profiles generated by a one-dimensional Kardar-Parisi-Zhang
equation, where it is shown to reproduce the input parameters very accurately. When applied to microscopic
models of growth, it provides the values of the coupling parameters associated with the corresponding con-
tinuum equations. This technique compares favorably with previous methods based on real space schemes.
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[. INTRODUCTION the usual symmetric second-order finite-difference scheme
for the nonlinear term violates an important symmetry of
In most complex systems, it is often difficult to directly continuum one-dimensional theorjl0]. An appropriate
relate microscopic interactions to the dynamics of coarsemodification in the framework of finite-difference approxi-
grained(mesoscale or large scalspatial structures. In this mations may overcome this drawbafgk0,11], but the ap-
context, nonlinear inverse methodd, which infer the equa- proach is nonetheless unable to properly display coarse-
tions governing a system from experimental observations ofrained properties of the original continuum equatj@g.
its successive time evolution, may prove to be more efficienSpecifically, it does not preserve the correct functional form
than direct methods. When only experimental data coupledf the coarse-grained equilibrium distribution, a basic feature
with the hypothesis of an underlying determinism are usedthat one expects from the renormalization group point of
the identification is purely nonparametric. Such methods argiew (a similar feature was already observed in R&8]).
extensively exploited, for instance, in biological and eco- In the present work, we follow a different route by intro-
nomic systems where predictions typically do not rely onducing a numerical approach which preserves more features
basic mechanisms, but are directly extrapolated from timef the original continuum KPZ equation. From the outset,
series using various proceduréseural networks, nearest- our method is based on a spectral rather than a finite-
neighbor algorithms, etc[1]. On the other hand, if a param- difference scheme. Spectral methods are widely used in fluid
etrized phenomenological equation, usually derived from anechanicd14] and their accuracy and reliability compared
combination of general symmetry considerations and heurigo those of finite-difference schemes have been tested, over
tic physical arguments, is assumed from the outset, the inthe years, on deterministic equations. In the context of fluc-
verse approach consists in finding an optimal set of parantuating interfaces, a numerical approach has already been
eters. In this work, we focus on this latter situation in theused[ 15,16 to analyze the evolution of a deterministic equa-
framework of interface growth dynamics. tion, namely, the Kuramoto-Shivashinsky equation. How-
The phenomenon of interface growth covers many techever, it has not been directly implemented on stochastic par-
nological applications ranging from epitaxial deposition totial differential equation$17]. In this paper, we first extend
bacterial growth and fluid motion in porous medi#&a-6]. It  spectral methods to stochastic equations, using the KPZ
is known that the large scale dynamics of such systems magquation as a test, and then devise a reconstruction procedure
be conveniently addressed in terms of continuum stochastior the inverse problem for the KPZ, and finally show that it
differential equations. The Kardar-Parisi-ZhatPZ) equa- is unaffected by the deficiencies of real space approxima-
tion [7] constitutes a paradigmatic universality class which istions.
believed to aggregate a large portion of observed interface The first reconstruction of the stochastic KPZ dynamics
dynamics. This Langevin type equatif8] possesses a non- from an experimental surface was performed by Lam and
linear term that accounts for the interface local normalSanderf18]. These authors used a standard finite-difference
growth absent in its linear counterpart the Edward-Wilkinsonscheme to approximate the dynamics and based their recon-
(EW) equation[9]. Despite a major effort from both the nu- struction on a least-squares algorithm. The experimental dy-
merical and analytical points of view, a complete characternamics was obtained by simulating various microscopic
ization of the KPZ properties is nevertheless still lacking.models. This strategy, however, seems to be limited for two
From the numerical viewpoint, finite-difference schemesreasons. First, it is based on a problematic numerical ap-
have been widely exploited to approximate the continuunproximation of the KPZ equation. Second, the least-squares
KPZ dynamics. Unfortunately, naive discretizations of thealgorithm, originally tailored for deterministic equations,
spatial derivatives may result in behaviors inconsistent withwas directly transposed to stochastic or Langevin type equa-
known properties of the continuum equation. For instancetions[18]. In fact, while the performance of this method has
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been tested in the presence of measurement noise—noideggmatic example is given by the Kardar-Parisi-Zhang
that affects experimental observations but does not changsguation[7]:
deterministic trajectories—in the presence of dynamical
noise(e.g., Langevin dynamig¢ghis scheme can be far less
successful. Moreover, the least-squares algorithm of Ref.
[18] is very much dependent on the assumption of small
sampling time of observations, a fact that should be checke
a posteriori(see Ref[12] for more details

I_n a previqus papdrl2], an alternative reconstruction al- (p(x,D) (X' 1)) =2D S(x—x") S(t—t"). ()
gorithm was introduced that does not suffer from the afore-
mentioned problems. The basic strategy amounts to applying Eq. (1), the symbok . ..) means that an ensemble aver-
the least-squares procedure at the level of correlation funcage over the noise is performed andv, \, and D are
tions rather than directly to the interface stochastic variablessoupling parameters. In writing Eqél) and (2), an appro-
This method, albeit successful, could not correctly accounpriate regularization is always tacitly assumed. This amounts
for the surface coarse-grained properties because of the ite defining a minimal length scakefor h(x,t) and assuming
trinsic deficiency of spatial discretization. Motivated by this that the surface variable(x,t) satisfies a KPZ regularized
feature, we shall remove this drawback by introducing aequation with a given spatial cutoff depending on the saale
spectral representation of the Langevin equation that is ndtor instance, this can be done by considering a discretized
plagued by discretization problems. Then we shall proceed tgersion of Eqs(1) and(2) with a as a lattice constant:
reformulate and test the approach of Ré®] for the inverse
KPZ problem, in spectral space. dh, v N — \F

The paper is divided into two parts and organized as fol- gt ¢t ;Fi [h]+ EFi [h1+\/ 76 3
lows. The first part concerns the KPZ equation itself and its
approximations. In Sec. Il, the continuum KPZ equation in
(1+1) dimensions is briefly recalled along with some pre-
vious spatial discretizations used to mimic it numerically. In h v A D
the same section, a discretization in Fourier space is then ——=c+ —F/[h]+—FNh]+ \ﬁei, (4)
proposed and shown to be an improvement over the real dt a? 2a’ a
space approach from a purely theoretical viewpoint. The de- o
terministic evolution equation for correlation functions in Where h; stands for the valuen(x;,t) of the periodic
spectral space, is then derived in Sec. Ill. Section IV is deSmoothed surface atj=ja, j=1,... N, whereN=L/a
voted to the numerical procedure and, in particular, to thétnd the quantities;(t) are the uncorrelated white noise
treatment via a pseudospectral method of the nonlinear terfyinctions
of the KPZ equation. Numerical results are then provided to
compare the performance of the various discretizations to the

corresponding analytical results obtained for the continuun’lnn Eas.(3) and(4). one usuallv anproximates the discretized
KPZ equation. The second part of the paper is devoted to thEapIgc.iérz by tée)'second-ordgr f[i)rrl)ite difference term

inverse method for KPZ dynamics, where we discuss how

2 A 2
ah=c+vath+ 5 (9h)*+ 7, (1)

heren(x,t) is a noise with zero average andaorrelated in
oth time and space as

or alternatively

(6i(1)o;(t"))=205;6(t—t"). )

one can reconstruct the dynamics from knowledge of inter- F[h]=h;.,+h,_,—2h (6)
face profiles. This technique, based on equations derived in ! ' ' H
Sec. lll, is described in Sec. V. It is then tested in Sec. Vignd the nonlinear term by

against data produced by synthetic interface profiles gener-

ated by a (#1)-dimensional KPZ equation with known — 1 5

coupling parameters. The test is performed even in the pres- Filh]=zlhisa=hi—4] 0
ence of coarse graining and provides the renormalization

properties of the KPZ coupling parameters. Finally, in Secgqr

VII, the reconstruction method is applied to various micro-

scopic models at different coarse-grained scales. \ 1 5 5
Filhl= §[(hi+1—hi) +(hi=his1)

Il. SPECTRAL DISCRETIZATION OF THE KPZ +(hir1=h)(hi=h;_]. 8

EQUATION
Q As previously discussefl0—-12, the only choice given by

We consider a one-dimensional surface profile of width  Eq. (8) guarantees that at least some properties of the correct
The surface can be either experimentally or numerically genequilibrium distribution are retrieved. Both representations
erated, and we assume it to be periodic with petiod\t a  Egs.(7) and(8) are problematic at the coarse-grained level,
mesoscopic scale, it can be described within a continuurhowever[12].

(hydrodynami¢ approximation by a variablé(x,t) (with Here we show how one can achieve an alternative and
0=x=<L) which satisfies a Langevin equati¢]. A para- alwayscorrect discretization of the continuum KPZ equation

046102-2



PSEUDOSPECTRAL APPROACH TO INVERSE PROBLEM. .

by a procedure that directly applies in momentum space. We

first expand the periodic continuum fiel(x,t) in Fourier
modes as

hxt)= 2 hq, (D)€', 9
nf—OO
where the Fourier component
R L2 )
hq (t)=f dx h(x,t)e 'dn* (10
n —L2

is associated with wave numbgg=2mn/L. Sinceh(x,t) is
real, this imposed? =ﬁ_q or alternatively, if h, =Aqn

+|/5’q is separated into real and imaginary pants,q
_aqn B
7(x,t) Ieads to Fourier Componentﬁ‘n with the correlations

(7,(1) 7, (1)) =2DL&, md(t=t'). (1D

Again, by decomposing the Fourier modeg =&, +iZq_

Bq A similar expansion for the noise term
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dﬁq N/2
0o _ 2r~2 H2 g
dt _CL+Enzl qn[aqn+:8qn]+§qo,

(17)

governs the temporal evolution of the zeroth md?x;!lg and
depends orﬁqn for 0O<n=N/2. The otherN real equations

are independent dﬁqo and describe the time evolution of

&ql"éql’ T ’&qN/Z'BqNIZ:
da
gt F [a ,B]+§q , (18
d,B
here
N/2
Fola.Bl=— VQﬁaqn_Z > Am0me[ @q g,
m,m’ =—N/2

_qu:éqm,]an,erm’ ’ (20)

into their real and i |mag|nary parts one obtains, in addition to

the relat|ons§q gq . g 0= _qun conditions on the cor-
relations
(&g, (D&, (1)) =DL8, md(t—t), (12)
(Zq, (D (1)) =DL&, md(t—t"), (13
(£ (g (1'))=0 (14

for n>0, m>0. For the Fourier component=0, one gets
ZqO:O and

(€g(D&qy(t))=2DLS(t—1"). (15)

Using Eg. (9) in Eg. (1), an infinite system of coupled
Langevin equations is obtained:

dhg (1) N
qn _ _
dt CL6H0 anh (t) 2L Z

m,m’=—o

qum’ﬁqm(t)

X g, (1) 8, meem + 77q,(1)- (16

N/2

>

S 2p
ol BI==vlnfo, o 2

qmqm’[&qmléqm,

+quaqm,]5n,m+m’ - (21)

The philosophy underlying this regularization is akin to a
renormalization group scheme in momentum space, where
high wave vectors are integrated out above a cuj@ff in
momentum space. This approximation is an alternative—
albeit not equivalent—method to discretize, in real space, the
width L into N+ 1 independent points separated by a dis-
tancea=L/N. For the sake of simplicity, the numbét is
hereafter assumed to be a power of 2.

For the continuum linear counterpart—the EW
equation—no approximations are involved in the framework
of this spectral method, as equations for modgs qy,, are
simply discarded. On the other hand, this approach is shown
to be far more useful than the real space Egsand(4), in
the nonlinear KPZ case, since unlike both approximations
given in Egs(3) and(4) it preserves some basic properties of
the original KPZ continuum equation as shown below. In-
deed, let us recall that, apart from a normalization factor, the
steady state distribution of the continuum KPZ equation is
given by

The spectral approximation now amounts to projecting
the above infinite system on the space of periodic functions

v (L2
I PJh]~ex ZDJ dx(a,h)?|.
of period L with a finite number of Fourier modes

(lan/<anr). All equations retain their original form W'th the The distribution of mode$q,|<qy,, in Momentum space
proviso that the infinite sum&/__,, are now replaced by thys reads:
qN/2] ex%

(22

finite ones=N2_,,. This procedure thus assumes tha;

=0 for anyn>N/2, and the original continuum equation is

then reduced to a set &f+ 1 real Langevin equations. The
first one,

N/2
dhg .- D . E qzl qnlz}

(23)
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The zeroth modd?]qo does not contribute to Ed23) since  tion equation for the ensemble avera@ézén)(t), and

the average value di(x,t) does not appear in Eq$22), <,32 )\1),
meaning that the surface always grows and its average never n
settles to a steady value, unlike the surface gradients. We
note that both the original distribution E@2) and its spec- (a? >(t):f DaDBa’ Pla,Bit], (26)
tral approximation Eq(23) areindependentf A. As already n n
remarked in Ref[10], this property is not satisfied by the
finite-difference approximation Eq3). This inconvenient ~o A nay A s
point is partly solved by the modification given in E@), <'Bqn>(t):j DaDBfy Ple.pitl, (27)
which leads to the correct steady state distribution
where

. (24 N/2
DaDB=[] da,dB,. (28)
j=1 J I

N
v
Pdhg, ... ,hN]’VEXF{_ 2Da 121 (hj+1_hi)2

However, it has been shown in R¢i.2] that even the ap-

proximation given in Eq(4) fails in the presence of coarse agsume that the probability densiBf @, 3,t] goes exponen-
graining. This means that if fluctuating interfaces, obtaine iallv to zero fora. B qoing tow. If the Fokker Planck equa-
by the numerical generation of a real space discretized KP y .8 going 5 q

equation at scale, are smoothed out up to a scale>a, tion (25) is multiplied by ag. and then integrated over all
these coarse-grained surfaces cannot be described by a rengafiables, one obtains, after an integration by parts,
malized KPZ equation &. The origin of this problem can
be traced back to the form of the steady state distribution
(24) within a real space scheme. In contrast, our spectral
discretization has been devised in such a way as to avoid this
drawback(see beloy, and can thus act as a safe starting (29)
point for the reconstruction procedure. ~

Recalling that there are only independent modes, the and similarly f0f,3(21n(t),
Fokker-Planck equation governing the evolution of the prob-

ability distribution P[ @, 3,t] associated with the Langevin d( B3 (1)
equationg(18) and (19) reads[8] d—r;:zf DaDBBq Gq [a,BIP[a,B,t]+DL.

(30

d(aj )(1) . e
—”zzf DaDPBag Fq [ BIP[a,B,t]+DL,

op N2 9(FqP) d(GqP) DL[ &P 4P
- - T From the expression®0) and(21), we then get fon>0

—_— P + [
- - s ~2 H2
a1 dag, iBq, 2 \oag B

d . .
(25) a<|hqn|2>= - 2yq§<|hqn|2>—qu+ 2DL, (3D

One may then check that the steady solut{@B) satisfies
Eqg. (25). It is known[8] that, when such a steady probability
exists, all time dependent distributions asymptotically con-
verge toward it. The discretized KPZ equation thus preserves ~oa s
the particular symmetry of the continuum KPZ equation. A Va " mg—NIZ A RICN- g, Mq, Ny Y100 me
further advantage of this discretization is that surfaces coarse ’ (32)
grained at length scales;,>a can be simply obtained by

cutting out modes with wave number larger thep,» (Ns  andR indicates that only the real part is considered. Equa-
=Na/a,). From Eq.(25), it is straightforward to get the tion (31) implies that

steady probability of these coarse-grained surfaces, that is, a

steady probability of the same form as E®@3) with N d

=N and the sam®/v (L=Ngas). The coupled Langevin gt 92(D=—2v04() —AK(1) +2DQy, (33
equations(18) and (19) ensure that, under coarse graining,
the exact steady state is recovered.

where

N/2

|~

n

where

IIl. EVOLUTION EQUATIONS FOR CORRELATION 1 R
FUNCTIONS 9zp()=T . a7 hg (O]%) (34)
Next we address the time dependent distribution

P[a,/3,t] appearing in Eq(25). We first exhibit an evolu- for p=1,2,... and
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N/2 dyh(x,t) are obtained by simple algebraic multiplications
K)=— > 9a0m0m R ignhy for 0<n<N/2. One then returns to real space,
n,mm’ = —N/2 n
X[(P_q,(Dg (DR ()] (35 <
—d, Am sy n,m+m’ » _ - . i iqnX
A= 2 idah, (e (41)
W, 4 N(N+1)(2N+1) _ _ _ -
Q2=n:ZN/2 Gn=3 ™ B : (36)  to obtain the gradient at given spatial points. The computa-

tion of (A/2)(d4h)? is straightforward at these points. One
then exploits a Fourier transform again to go back to spectral
space using the values of the nonlinear terms at these collo-
cation points. In order to prevent the aliasing problem
[14,20, we suitably choose the range of the collocation
%gz(t)= —2vg,(1)+2DQ,. (37) points and the number of Fourier modes to be used in such a

way that the procedure provides the exé‘qg1 for 0<n

<N/2 of Eq. (40). The modes external to the rangeN/2
=n=<N/2 can be dropped since they do not enter in the ac-
al computations. This well-known techniqudealiasing
4]), albeit seemingly more complicated, turns out to be
much more efficient than a brute force computation of Eq.
(40).

In Appendix A it is shown that the terrK(t) in Eq. (33)
actually vanishes identically. Hence one is left with

Therefore onlyr andD explicitly appear in the above equa-
tion. The absence of the paramekeim Eq. (37) is reminis-
cent of an analogous phenomenon appearing in the stea?
probability distribution(23) in the (1+ 1)-dimensional case.
It is worth stressing that, although theterm does not ex-
plicitly appear in Eq.(37), it is nevertheless implicitly
present through the evolution gf(t).

Another equation can be obtained by averaging E@): B. Comparison with real space discretization

We now compare the performance of the spectral discreti-
zation with the one based on the stand#&td. (3)] and modi-
fied [Eq. (4)] real space discretization and with the corre-
sponding analytical results obtained for the continuum KPZ
where equation. The surface is grown via the pseudospectral KPZ

equations with a regularization at scaeln these simula-
go(t)z<ﬁq (1)) (39) tions we have always used a Euler time step in the range
0 1072-10" 2, which is sufficiently small to avoid any numeri-
cal instability up to the sizes and for theconsidered here.

In order to compare the performance of the pseudospec-
tral method to that of real space discretization schemes, we
apply a test akin to the one carried out in REf1]. We
IV. PSEUDOSPECTRAL METHOD FOR THE KPZ generate a steady state KPZ surface in-(0) dimensions,

EQUATION with lattice spacinga=1, and parameters=1, A\=3, D
A. Numerical procedures =1, ¢c=0, by using(i) the standard real space discretization
), (i) the real space discretizatiqd) introduced in Ref.
1], and (iii) our pseudospectral discretization. The steady
tate roughnes®V(L) obtained by the three methods for
arious sized is then compared with the exact value

d
ago(t)—CLﬂL zgz(t), (39

This last relation does not explicitly involve either the noise
or the diffusion term.

In order to compare rough surfaces numerically generate
by various spatial discretizations of the KPZ equation, wi
introduce a one-step Euler scheme in time for the temporq?/
discretization. This simple algorithm is used since, for sto-
chastic equations, it is known that a naive application of a
two-step method can result in less computational efficiency W(L) =/ 1
[19]. In order to speed up the evolution of E¢E8) and(19),

a pseudospectral method is used at each time step of ther

Euler scheme. This method efficiently computes the quantityz the continuum KPZ equatiof1]. Figure 1 shows that,

nlike the standard real space representat®)nwvhich un-

A N N/2 A . derestimates the rati@’D (=1 in the present cageboth the
Xa,= ~ 3 > AmAm Ng (ONg (1) Snmrmr s modified real space representati@n and the pseudospectral
m,m’ = —N/2 representation yield, on average, the correct ratio. This is no

(40 surprise since we have previously shown that the pseu-

h | and i . ¢ th i trib dospectral representation correctly accounts for the steady
Whose real and imaginary part are the nonfinéar contriblg; e gistripution properties, a feature not shared by the stan-
tions of theN+1 Langfavm equation§l8) and(.19). In thIS. dard real space representati@ [12].

procedure, the quantity, can be evaluated without explic- Figure 2 depicts the behavior g§(t) for a surface of size

ity performing the double sum appearing in E4O0) for L=256, flat att=0, and averaged oveév=500 independent
eachn. First, the Fourier modes of the surface derivativegrowths. The curve has a gradual incredstarting from
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! 300 T T T T

© Real(Standard)
» Real(Modified)
* Pseudo
250
11+ T J
200 b
[ |
T o~
> 1.0 :F I E £ % 3 150 .
i %0
£ T <
E 100 | 1
0.9 - B
50 E
o 1 1 1 1
0.8 L
10 100 1000 0 10000 20000 ; 30000 40000 50000
L

_ oo . . FIG. 2. Temporal behavior aj,(t) for KPZ growth on a one-
FIG. 1. ¢(L)=v12v/DLW(L) as a function of sizd. where dimensional substrate of site=256. The temporal axisis written

W(L) stands for the §teady St.ate roughness c.o.mputed using thlﬁ terms of numbers of Euler time steps, here taken to be’.10
standard real space discretization E8), the modified real space

discretization Eq(4), and the pseudospectral discretization given in
Eqgs.(18) and(19) for a one-dimensional KPZ equation. The dotted b o1 5
line corresponds to the exact continuum value given by (Bg) R(zp)(t)E L n:ZN/Z qnp<|hqn(t)| )
(v/D=1). Units here and below are arbitrary.

—Ng/2—1

N/2

- 2p/1fA 2
zero until it saturates after a characteristic tirfe~30 000 L n:,%zﬂ A <|hqn(t)| )

% 10" 3. This time, which depends upon the size of the sys-
tem, represents the crossover after whighall length scales indicating the “fast” part. In Fig. 3, the behavior @f,(t),
have saturated(ii) the velocity of the average height be- g(zb)(t), and R(Zb)(t) is plotted for a scalind=2. Before a
comes constant, andii) the roughness levels off. From .naracteristic timetS (t$~350x 103 for the parameters
renormalization group theory, one expects tijat L where  chosen in the pseudospectral KPZ equatiprshort-wave
the dynamical exponert is equal to 3/2 for ¥1 dimen-  modesNy/2+ 1<|n|<N/2 contained irR¥?)(t) are evolving
sions[2]. o much faster than long-wave modessfh|<Ng/2. Similar
tlnttr:]e jp'”t of ren?rma(l;zatlofn groulp thetzr(])ryhle: “Stgepa'features occur for higher values bf=2', thus defining a
rate the dynamics of modes of wavelength shorter than i fi c_sC_ . ey
=ba with b=2' from modes of wavelength longer thag. ;e;qnu;nctiat 0|; cff;irna(;: tig;ﬂ%fﬂ%%itf;tgsznd .tclio;oglo
, 2 3

This can be done using the following decomposition Of>< 10 3. The above remarks are clearly important when de-
92p(t) (Ns=N/Db): fining the dynamics of the coarse-grained surface obtained
by eliminating the modes of wavelength shorter than scale
ty=g®(t)+ RO (1), 43 a;=ba=2'a. This surface is characterized by the same av-
92p(t) =029 (1) +Rop (1) “3 erage heighg{” =g, for anyb, andg{®(t) playing the role
of g,(t). By rewriting Eq.(38) as

(45

with dg®(t)
gy ’(t A A
O =c|1+ RO [L+-gP(1), (49
N2 dt 2L 2
1 S
0 ty=— 2p/ 1R 2
92 ()= L nzgﬁs,z A <|hqn(t)| ) (449 it is clear that the coarse-grained surface witl=N/b
modes will satisfy a KPZ equation with a renormalized
and identical\s=\ only whenRY has reached saturation.
representing the “slow” part, and Starting from a flat interface, this happens whenever the Fou-
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300 - ' ' should begin collecting the data after a tiet}’ (starting

— o from an initially flat surfacgin order tg best characterize the

............ ) dynamics of a surface coarse grained by a fadter2'.

»50 | -- R ] Moreover, the most prominent evolution of this surface oc-
curs during the time interval when the length scales between

2as andag=ba are not thermalized, i.e., during the interval

[t7,t,,], which is then the optimal period to characterize its

200 L dynamics.

V. RECONSTRUCTION PROCEDURE BASED ON THE

SPECTRAL APPROXIMATION
150 -

Based upon the above spectral approximation, we now
introduce a method to identify, at a given length scale, an
‘ optimal set of KPZ effective coupling parametearsy, \,

100 - [/ andD from “experimental” snapshots of interface profiles.
The “experimental” data may be generated by numerical

e simulations of the KPZ equation itse§ee tests in Sec. VI
L or by numerical microscopic models emulating surface pro-
S0 i cessegSec. VI or they may be associated with real inter-

' face growth. For the sake of simplicity, measurements are
always assumed free of observational noise. This approach
} , , , thus constitutes a typical inverse problem for an infiridge
0 500 1000 1500 2000 finite, but large, in the discretized approximatiodimen-

t sional system with a finite number of parameters to identify.

FIG. 3. Temporal behavior of functiong,(t), g@(t), and  Although in this work we focus on the KPZ universality
RA)(t) (see textfor KPZ growth on a one-dimensional substrate of €lass, our method has a more general validity, and may be

sizeL = 256. The temporal axisis written in terms of numbers of €xtended, with slight changes, to other universality classes.
Euler time steps 10°. A first reconstruction of KPZ dynamics was attempted by

Lam and Sander$18]. These authors used E@3) and
rier modesNy/2<n<N/2 and —N/2<n<—NJ2 are ther- Wworked in real space using experimental heighf8¥t)

A LG e i g, e AT T g s

e
e

malized, i.e., fort>tf. Similarly, upon summing Eq31)  measured aN pointsx;=ja with j=1,... N. For the re-
over the slow modes=1, ... Ng/2, one finds that construction, they performed a least-squares calculation di-
rectly on the Langevin equations to compute the parameters
dgi(t) ) Ns/2 ) ) ¢, v, and\. The noise ternD was eventually obtained as a
ar 2% (t)_)\n—ZN /2 OnVq, +2DQ37, by-product of the previous calculation. In RgL2], the dif-
- 47) ficulties associated with this approach have already been dis-

cussed. In the present work, the analysis is based on the
philosophy explained in previous sections and &), [Eq.

where (38)] is used to identify through a least-squares procedure the
Ng/2 coefficientsy, D, (c,\). Besides the fundamental theoretical

QP = > 2. (48)  features discussed in Sec. II, several reasons may be invoked
n=-Ng2 in favor of our approach. First, this method is not directly

c , . based on the primitive stochastic equations but uses the de-
Fort=13, it is assumed that the dynamics of fast modes igerministic equations introduced in Sec. Iil which govern the
slaved to that of slow modes, in such a way that the term innsembple average of correlation functions. Standard identifi-
A can be written as cation algorithmge.g., the least-squares methodhich are

N2 well suited and have been widely tested for deterministic
2y, _ (0) /4y (b) equations, are expected to be more reliable under such con-
)\n:ZNSIZ GnVa,=2Av057 (0 ~2ADQ2", (49) ditions. Second, as the functiogs,(t) are already averaged
quantities, a smaller number of realizations is expected to be
thus satisfying a coarse-grained KPZ equation with renorrequired due to the self-averaging property. Finally, dynami-
malized parameterg;=v+Av and D,=D+AD. For the cal noise is directly introduced in our reconstruction algo-
EW universality class, it is easy to show that, using &) rithm, unlike in that of Ref[18]. This seems a natural re-
and Eg.(47), none of the parameters renormalize, as ex-quirement since noise is an intrinsic parameter of interface
pected from renormalization group thed®j. evolution.
Our purpose here is to compute the KPZ renormalized In order to get ensemble averages of spatial correlations,
parameters directly from the experimental observations of\’ growths starting from the same surface, e.g., a flat surface,
the surface growth. According to the previous discussion, wéiave been carried out. This providaédistinct realizations
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of the same stochastic process. For a given realization, the 20 . . - .
experimental surface is observed at timeé,=(kAtk obet
=1,2,... pM) where At is the measurement sampling - "b=2
time. This procedure may be easily performed in a real ex- . *b=4
periment and leads to quantitigg(t), g,(t), and g,(t)

which are linked, at the scale considered, to the average
height, the average of the square of the first or second surface
derivatives of the smoothed surface. *

Let us now integrate Eq37) duringp sampling timesit: | *

1.5 p

92( Ty 1) —92(Ty) — o 1 kaH i - - *
Tir1— Tk Tis1— Tk

g4(t)dt > 1.0 . . o
Tk

+2DQ,, (50

where timeT, =kpAt (k=1,... M). Similarly, from Eg.
(38) one gets

Tee 1) —9o(T A
Jo(Tk+1) — ol k)=cL+——f k+1gz(t)dt.
Ter1— Tk 2 T T J1,
(51

If At is smaller than the characteristic time of the dynamics,  %u500 00001~ 00002 00003 00004  0.0005
one may approximate the time integral in EGs0) and(51) 1/L

as an average over thp intermediate sampling times, ) ) N
thereby obtainingl — 1 linear constraints on the parameters. " 'C- 4. The coupling parametes, for various coarse-graining

U . ) s .
v, D andc, \. A simple least-squares calculation then deter_Ievelsb 2" and for increasing lattice sizes 2048, 4096, ar_ld 8192in
. the case of a numerically generated KPZ equation. The input value
minesv, D from Eq. (50) andc, A\ from Eq. (51). o .
is v=1. Error bars are of the order of the symbol sizes.

VI. RESULTS FOR THE KPZ RECONSTRUCTION nonlinear contribution, as mentioned above.

In order to test our reconstruction method, we use the Sucha procedurel may be iterated for coarse-grained sur-
above procedure on rough surfaces generated through faces aas=ba(b=2'=2.4,...)which are still assumed to
discretized KPZ equation with known coupling parameterd® governed by KPZ-like equations. The reconstruction of
(v=1, \=3, D=1, c=0). Note that, in order to compute the renormalized equation should th<_an be perfprmgd with
the ensemble average valuggt), g,(t), andgy(t), we use data taken aftet} since thg renormallzed equgtlon is not
N=500 samples to obtain a convergent value. This is imporéXPected to be valid at earlier imes. Once again, because of
tant since statistical fluctuations may be large enough to instatistical fluctuations, we expect the most efficient interval
duce a measurement error exceeding the nonlinear contribghoice for the identification at length scalgto be[t},t}, ;].
tions, and under such circumstances the identification woul§learly the reconstruction becomes more and more difficult
fail. Furthermore, each reconstruction is repeated for a smalP implement asb increases, since the time intervals
number of independent configuratiottgpically 5) in order  [t',tf.;] and the required statistics will correspondingly in-
to get an estimate of the error bars associated with the recogrease. Figures 4—6 depict the results for the three param-
structed parameters. etersvg, \g, andDg as a function of the scaling ratio for

In the absence of coarse graining, data are produced byarious lattice sizegerror bars are of the same order of mag-
the discretized equation&l7)—(19) where the minimum nitude as the symbol sizes and therefore not showhe
length scalea=L/N is introduced by the spectral approxi- optimal value is then expected to correspond to lthe »
mation. Since equations used in the reconstruction procedutinit. For the scalea, one obtains the correct value, which
are exactly identical to the ones generating the time serieshows that the method is capable of identifying the correct
this provides a first stringent test of the validity of our parameter. For the coarse-grained case the extrapolated val-
method. For the original data, the most efficient intervalues of\, as well as the rati@/D, appear to be independent
choice for performing the identification is expected to beof b (as they shouldwhile parameterss andD are renor-
[015]. Indeed, aftett§, all length scales betweemand 22 malized[3].
are thermalized and the contribution to the variation of the
steady velocity stemming from the nonlinear term becomes
less and less importafisee Eq.(46)]. In this instance, the
inversion technique may run into difficulties in computiog The ultimate goal for our method is to be appliedr¢al
and\ since statistical fluctuations in the computation of en-experimentalsurfaces. In this section, as an intermediate
semble averages should not be greater than the value of thisep, the reconstruction technique is tested on data produced

VII. RESULTS FOR GROWTH MODELS
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FIG. 5. The coupling parametar, for variousb and increasing FIG. 6. The coupling parametd for variousb and for in-
lattice sizes 2048, 4096, and 8192 in the case of a numericallgreasing lattice sizes 2048, 4096, and 8192 in the case of a numeri-
generated KPZ equation. The input value\is 3. cally generated KPZ equation. The input valuédis 1.

ts?ézl:?xgE[Jyn;iecg??#?O:g;is)cg?;ngggeézpigﬁﬁgcﬁuoﬁe\ﬁvﬁgn Is the number of sitgs The unit of time is defined in such a
A e . . way that st=1/N. In the following, we use sizes up to

surface diffusiofRDSD) which is described by the EW lin- —8192 with /=50 independent qrowths

ear continuum theoryN=0); (ii) a particular solid-on-solid P 9 '

model called single step (BSJ which is expected to belong

to the KPZ universality class. This latter model can be

mapped onto an Ising modg&1], thus providing an analyti-

cal value of A and hence a further stringent test for our .isic site s is always depositedL2). This means that one
methoq. . . . layer is deposited on the surface during a unit of time. Law
_ A microscopic growth model is composed of three main(| 3y can pe phrased as follows. Upon reaching the surface,
ingredients(L1) a probabilistic law, independent of the sur- the particle falling toward a specific site compares the
face dynamics itself, which describes the flux of particlesheightS of the nearby neighbors and sticks to the one of low-

directed toward the surface(L2) a—deterministic or gqtheight unless the original site is a local minim@mthat
probabilistic—rule that determines whether a given particle,;5e it does not moye

directed toward the specific sigais effectively depositedq We have generated a RDSD model starting from a flat
is an active sitpor simply discardedgis not active; (L3) @ g rface and performed coarse graining upbte 16. The

prescription yielding the displacement of the pa_r';icle or thesampling measurement tindét is taken to be larger than the
rearrangement of the surface, after the deposition has bgi e nit. We have consistently found~0 andc~1, as

come effective. expected. Moreover, we find values ferand D which, asb

Law (L1), characterizing the particle flux, defines the increases, slowly converge io-0.8 andD ~0.5 (we recall

mean time or the time scale necessary for a particle to fall - -~ 1 2ndD=0.5 for a simple random deposition model
toward—>but not necessarily be deposited on—the surface. 'R/ith our time unité,.

principle, this law may be given by a probability varying

with site location and may also be of intermittent nature. In B. The SS1 model

this work, however, we consider the simplest case of uniform ’

flux in both space and time. During each time interdg) For the SS1 model, an “active site” is defing@l2] as a

which defines the time scale of the process, a unique particlgite that is a local minimum for nearby sites, i.e., such that

falls on the surface with probability 1 and selects a given siteh;<<h;_; andh;<h; . ; (L2). The(L3) rule for the SS1 model

s with equiprobability 1N. requires that two particles are deposited on the active site.
In order to compute the parameters, we use as space uritur algorithm has been devised to cover non-steady-state

the unit cell of the microscopic modal=1 (L=N whereN  conditions. Since this situation is hardly discussed in the lit-

A. The RDSD model
In the RDSD model, a particle directed toward the spe-
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20 . . . . -05 . ; ; .
o b=1 ®b=4
= h=2 u b=8
o b=4 * b=16
o hb=8
* b=16
15| i 0} -
L ] < -15F ° . H o
o 1.0 8 8 H 8 . u -
* * *
* L] L] L]
=20 b
05 i *
25 . L L L
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005

0.0 1 1 1 1
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005

) FIG. 8. The coupling parameteg, for the SS1 growth model.
FIG. 7. The ratioR=v¢/Dg for the SS1 growth model.

erature[3,22], in Appendix B an efficient way of including fynctions._These fu_nctions do satisfy a deterministic evolu-
the time dependence in this model is reported. The samplinfion eguation, allowing the use of standard least-squares pro-
measurement timat is taken to be the unit of time. Note cedure to identify the coupling parameters. This second in-
that, unlike in the RDSD model, the time unit does not cor-9redient parallels the analogous one introduced in R,
respond to the effective deposition time of one layer. which was, however, based on a real space representation.
We have used a “toothlike” initial surface with odd and Ve first tested the overall procedure on numerically gen-

even sites having heights 0 and 1, respectivibnce there
are N/2 active site at this stag¢22]. Reported in Fig. 7 is 1.0 ' ' ' '
the result for the ratiors/ D for various scaling factors. As obd
b increasesys/D tends to a constant characteristic of the = b-8
KPZ phenomenology fob=4. This is confirmed by Fig. 8 * b=16
which depicts the results foxg for b=4, displaying a ten-
dency forag— —2.

A word of caution is in order here. As we discussed, the
value of\ is exactly known through a mapping onto an Ising
model[21]. The predicted value is=—1 when computed
with a time unit yieldingc=1 at stationarity. This result is
consistent with ours since it corresponds to a time unit which
is half of the one we have exploited{~ 0.5) (see Fig. 9. © o5

VIll. CONCLUSION

In this work we have proposed a method for extracting the
coupling parameters of the KPZ equation from experimental
snapshots of successive interface profiles. This method
hinges on two main ingredients. First, a pseudospectral
scheme is used to simulate the KPZ equation, and this
scheme can be reckoned as an improved discretization with
respect to the standard real space finite-difference ones. As a
matter of fact, it preserves both the correct steady state dis- o : : s s
tribution and the coarse-graining properties of the corre- 0.0000  0.0001  0.0002 I/LOIOOOS 0.0004  0.0005
sponding continuum equation. Second, our reconstruction al-
gorithm is based on the time evolution of correlation FIG. 9. The coupling parameteg for the SS1 growth model.
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erated KPZ profiles with known coupling parameters. Our 1 1

scheme is capable not only of reproducing the correct param-  K(t)= — > = 0nAmAm’[An+ Am+ A ]

eters in the absence of coarse graining (oulike the previ- L 3

ous attempf12]), also provides consistent and robust results N - -

for coarsep-)grained surﬁzaces. XR<(hqn(t)hqm(t)hqu(t))>501n+m+m’ . (A2
Next we applied our algorithm to microscopic models,

which more closely mimic experimental situations. In such awhich obviously vanishes.

case, a smoothing procedure is unavoidable in order to de-

scribe the surface in terms of a continuum evolution equa-

tion, and it is a vital requirement to use an efficient and APPENDIX'B: TIME EVOLUTION OF THE SS1

reliable method under such conditions. Again, we were able DEPOSITION MODEL—AN EFFICIENT ALGORITHM

to reproduce the few known analytical results for these mi- A naive simulation of the SS1 model would proceed as
croscopic growth models. Furthermore, some_addmonal eSollows. During each time intervabt, a unique particle is
timates of other parameters have also been given. dropped on the surface, and one checks whether it is falling
~ We remark that our method is of general applicability. Foron an active or inactive site according c2). If deposition
instance, an extension to two-dimensional surfaces is not eXs attempted on an active site, according to &®) for SS1,
pected to present major difficulties. Similarly, it could be time is incremented and the particle is deposited. On the
applied to determine stochastic equations emulating coarsgpntrary, a particle directed toward an inactive site is dis-
grained equations of the Kuramoto-Shivashinski type whergarded but the time is nonetheless incremented. This proce-

the universality class is still an open quest[@3]. dure is very time consuming, however. Efficient algorithms,
generating equilibrium surfaces in a fast way, simply con-
ACKNOWLEDGMENTS sider active sites and do not take time into account. Such

algorithms cannot be used here sirigave have not reached
equilibrium and(ii) we need to quantify the interface effec-
tive time evolution. Therefore we next implement an im-
proved algorithm providing the time evolution as well.

At time t=Kkt, let us assume we know the numidey(t)
of active sites of the surface and their respective positions.
APPENDIX A: PROOF THAT K(t)=0 We then select, with equal probability, one of such active

We prove here that the quantitg(t) appearing in Eq. Sites, deposit a particle on it, and then perform the reordering
(33) is actually zero. The proof is patterned after a similar0f the surface and the updating of the active sites. The im-

proof used to show that the steady state probabi@g) is  Portant question is how long we have to wait to see the
independent of for a (1+ 1)-dimensional KPZ equation. deposition event occur. The probability of deposition be-

Funding for this work was provided by a joint CNR-
CNRS exchange progratiGrant No. 5274 MURST, and
INFM. It is our pleasure to thank Rodolfo Cuerno, Matteo
Marsili, and Lorenzo Giada for enlighting discussions.

Indeed, by a reflection,— —q, we obtain tweent andt+ 6t is a=N,(t)/N and the probability thak
=t/ ot time steps elapse before a deposition occura[is

1 N/2 . . ~ —a]*"L. This law, of probability of time intervals is numeri-
Kt)=— > Ga0mAm R{(hq ()N ()Ng ) caly generated as follows. Intervals[#6y,6;],
L™ nmm’=-nr2 [61,05], ... [0k, 0s1] are defined i 0,1] where 6,=0,
X 8on+mim - A1) 01=a andb =0 +a[l-al ie, f=1—[1-a]“ As-

sume that a numbes is chosen with equiprobability in the
The above quantity is invariant under a cyclic permutation ofinterval [0,1]. If it lies in the interval[ 6,6, 1], then the
the indicesn,m,m’. Therefore it can be rewritten as waiting time is given by K+ 1)4t.
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