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Pseudospectral approach to inverse problems in interface dynamics
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An improved scheme for computing coupling parameters of the Kardar-Parisi-Zhang equation from a col-
lection of successive interface profiles is presented. The approach hinges on a spectral representation of this
equation. An appropriate discretization based on a Fourier representation is discussed as a by-product of the
above scheme. Our method is first tested on profiles generated by a one-dimensional Kardar-Parisi-Zhang
equation, where it is shown to reproduce the input parameters very accurately. When applied to microscopic
models of growth, it provides the values of the coupling parameters associated with the corresponding con-
tinuum equations. This technique compares favorably with previous methods based on real space schemes.
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I. INTRODUCTION

In most complex systems, it is often difficult to direct
relate microscopic interactions to the dynamics of coar
grained~mesoscale or large scale! spatial structures. In this
context, nonlinear inverse methods@1#, which infer the equa-
tions governing a system from experimental observation
its successive time evolution, may prove to be more effici
than direct methods. When only experimental data coup
with the hypothesis of an underlying determinism are us
the identification is purely nonparametric. Such methods
extensively exploited, for instance, in biological and ec
nomic systems where predictions typically do not rely
basic mechanisms, but are directly extrapolated from t
series using various procedures~neural networks, neares
neighbor algorithms, etc.! @1#. On the other hand, if a param
etrized phenomenological equation, usually derived from
combination of general symmetry considerations and heu
tic physical arguments, is assumed from the outset, the
verse approach consists in finding an optimal set of par
eters. In this work, we focus on this latter situation in t
framework of interface growth dynamics.

The phenomenon of interface growth covers many te
nological applications ranging from epitaxial deposition
bacterial growth and fluid motion in porous media@2–6#. It
is known that the large scale dynamics of such systems
be conveniently addressed in terms of continuum stocha
differential equations. The Kardar-Parisi-Zhang~KPZ! equa-
tion @7# constitutes a paradigmatic universality class which
believed to aggregate a large portion of observed interf
dynamics. This Langevin type equation@8# possesses a non
linear term that accounts for the interface local norm
growth absent in its linear counterpart the Edward-Wilkins
~EW! equation@9#. Despite a major effort from both the nu
merical and analytical points of view, a complete charac
ization of the KPZ properties is nevertheless still lackin
From the numerical viewpoint, finite-difference schem
have been widely exploited to approximate the continu
KPZ dynamics. Unfortunately, naive discretizations of t
spatial derivatives may result in behaviors inconsistent w
known properties of the continuum equation. For instan
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the usual symmetric second-order finite-difference sche
for the nonlinear term violates an important symmetry
continuum one-dimensional theory@10#. An appropriate
modification in the framework of finite-difference approx
mations may overcome this drawback@10,11#, but the ap-
proach is nonetheless unable to properly display coa
grained properties of the original continuum equation@12#.
Specifically, it does not preserve the correct functional fo
of the coarse-grained equilibrium distribution, a basic feat
that one expects from the renormalization group point
view ~a similar feature was already observed in Ref.@13#!.

In the present work, we follow a different route by intro
ducing a numerical approach which preserves more feat
of the original continuum KPZ equation. From the outs
our method is based on a spectral rather than a fin
difference scheme. Spectral methods are widely used in fl
mechanics@14# and their accuracy and reliability compare
to those of finite-difference schemes have been tested,
the years, on deterministic equations. In the context of fl
tuating interfaces, a numerical approach has already b
used@15,16# to analyze the evolution of a deterministic equ
tion, namely, the Kuramoto-Shivashinsky equation. Ho
ever, it has not been directly implemented on stochastic p
tial differential equations@17#. In this paper, we first extend
spectral methods to stochastic equations, using the K
equation as a test, and then devise a reconstruction proce
for the inverse problem for the KPZ, and finally show that
is unaffected by the deficiencies of real space approxim
tions.

The first reconstruction of the stochastic KPZ dynam
from an experimental surface was performed by Lam a
Sander@18#. These authors used a standard finite-differen
scheme to approximate the dynamics and based their re
struction on a least-squares algorithm. The experimental
namics was obtained by simulating various microsco
models. This strategy, however, seems to be limited for t
reasons. First, it is based on a problematic numerical
proximation of the KPZ equation. Second, the least-squa
algorithm, originally tailored for deterministic equation
was directly transposed to stochastic or Langevin type eq
tions @18#. In fact, while the performance of this method h
©2001 The American Physical Society02-1
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been tested in the presence of measurement noise—n
that affects experimental observations but does not cha
deterministic trajectories—in the presence of dynami
noise~e.g., Langevin dynamics! this scheme can be far les
successful. Moreover, the least-squares algorithm of R
@18# is very much dependent on the assumption of sm
sampling time of observations, a fact that should be chec
a posteriori ~see Ref.@12# for more details!.

In a previous paper@12#, an alternative reconstruction a
gorithm was introduced that does not suffer from the afo
mentioned problems. The basic strategy amounts to appl
the least-squares procedure at the level of correlation fu
tions rather than directly to the interface stochastic variab
This method, albeit successful, could not correctly acco
for the surface coarse-grained properties because of th
trinsic deficiency of spatial discretization. Motivated by th
feature, we shall remove this drawback by introducing
spectral representation of the Langevin equation that is
plagued by discretization problems. Then we shall procee
reformulate and test the approach of Ref.@12# for the inverse
KPZ problem, in spectral space.

The paper is divided into two parts and organized as
lows. The first part concerns the KPZ equation itself and
approximations. In Sec. II, the continuum KPZ equation
(111) dimensions is briefly recalled along with some p
vious spatial discretizations used to mimic it numerically.
the same section, a discretization in Fourier space is t
proposed and shown to be an improvement over the
space approach from a purely theoretical viewpoint. The
terministic evolution equation for correlation functions
spectral space, is then derived in Sec. III. Section IV is
voted to the numerical procedure and, in particular, to
treatment via a pseudospectral method of the nonlinear t
of the KPZ equation. Numerical results are then provided
compare the performance of the various discretizations to
corresponding analytical results obtained for the continu
KPZ equation. The second part of the paper is devoted to
inverse method for KPZ dynamics, where we discuss h
one can reconstruct the dynamics from knowledge of in
face profiles. This technique, based on equations derive
Sec. III, is described in Sec. V. It is then tested in Sec.
against data produced by synthetic interface profiles ge
ated by a (111)-dimensional KPZ equation with know
coupling parameters. The test is performed even in the p
ence of coarse graining and provides the renormaliza
properties of the KPZ coupling parameters. Finally, in S
VII, the reconstruction method is applied to various micr
scopic models at different coarse-grained scales.

II. SPECTRAL DISCRETIZATION OF THE KPZ
EQUATION

We consider a one-dimensional surface profile of widthL.
The surface can be either experimentally or numerically g
erated, and we assume it to be periodic with periodL. At a
mesoscopic scale, it can be described within a continu
~hydrodynamic! approximation by a variableh(x,t) ~with
0<x<L) which satisfies a Langevin equation@2#. A para-
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digmatic example is given by the Kardar-Parisi-Zha
equation@7#:

] th5c1n]x
2h1

l

2
~]xh!21h, ~1!

whereh(x,t) is a noise with zero average andd correlated in
both time and space as

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!. ~2!

In Eq. ~1!, the symbol̂ . . . & means that an ensemble ave
age over the noise is performed andc, n, l, and D are
coupling parameters. In writing Eqs.~1! and ~2!, an appro-
priate regularization is always tacitly assumed. This amou
to defining a minimal length scalea for h(x,t) and assuming
that the surface variableh(x,t) satisfies a KPZ regularized
equation with a given spatial cutoff depending on the scala.
For instance, this can be done by considering a discret
version of Eqs.~1! and ~2! with a as a lattice constant:

dhi

dt
5c1

n

a2
Fi

n@h#1
l

2a2
F̄ i

l@h#1AD

a
u i , ~3!

or alternatively

dhi

dt
5c1

n

a2
Fi

n@h#1
l

2a2
Fi

l@h#1AD

a
u i , ~4!

where hj stands for the valueh(xj ,t) of the periodic
smoothed surface atxj5 ja, j 51, . . . ,N, where N5L/a
and the quantitiesu i(t) are the uncorrelated white nois
functions

^u i~ t !u j~ t8!&52d i j d~ t2t8!. ~5!

In Eqs.~3! and~4!, one usually approximates the discretiz
Laplacian by the second-order finite difference term

Fi
n@h#5hi 111hi 2122hi , ~6!

and the nonlinear term by

F̄ i
l@h#5

1

4
@hi 112hi 21#2 ~7!

or

Fi
l@h#5

1

3
@~hi 112hi !

21~hi2hi 11!2

1~hi 112hi !~hi2hi 21!#. ~8!

As previously discussed@10–12#, the only choice given by
Eq. ~8! guarantees that at least some properties of the cor
equilibrium distribution are retrieved. Both representatio
Eqs.~7! and ~8! are problematic at the coarse-grained lev
however@12#.

Here we show how one can achieve an alternative
alwayscorrect discretization of the continuum KPZ equati
2-2
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by a procedure that directly applies in momentum space.
first expand the periodic continuum fieldh(x,t) in Fourier
modes as

h~x,t !5
1

L (
n52`

1`

ĥqn
~ t !eiqnx, ~9!

where the Fourier component

ĥqn
~ t !5E

2L/2

L/2

dx h~x,t !e2 iqnx ~10!

is associated with wave numberqn52pn/L. Sinceh(x,t) is
real, this imposesĥqn

* 5ĥ2qn
or alternatively, if ĥqn

5âqn

1 i b̂qn
is separated into real and imaginary parts,â2qn

5âqn
, b̂2qn

52b̂qn
. A similar expansion for the noise term

h(x,t) leads to Fourier componentsĥqn
with the correlations

^ĥqn
~ t !ĥqm

~ t8!&52DLdn,2md~ t2t8!. ~11!

Again, by decomposing the Fourier modesĥqn
[ĵqn

1 i ẑqn

into their real and imaginary parts, one obtains, in addition
the relationsĵqn

5 ĵq2n
, ẑqn

52 ẑq2n
, conditions on the cor-

relations

^ĵqn
~ t !ĵqm

~ t8!&5DLdn,md~ t2t8!, ~12!

^ẑqn
~ t !ẑqm

~ t8!&5DLdn,md~ t2t8!, ~13!

^ĵqn
~ t !ẑqm

~ t8!&50 ~14!

for n.0, m.0. For the Fourier componentn50, one gets
ẑq0

50 and

^ĵq0
~ t !ĵq0

~ t8!&52DLd~ t2t8!. ~15!

Using Eq. ~9! in Eq. ~1!, an infinite system of coupled
Langevin equations is obtained:

dĥqn
~ t !

dt
5cLdn,02nqn

2ĥqn
~ t !2

l

2L (
m,m852`

`

qmqm8ĥqm
~ t !

3ĥqm8
~ t !dn,m1m81ĥqn

~ t !. ~16!

The spectral approximation now amounts to project
the above infinite system on the space of periodic functi
of period L with a finite number of Fourier modesĥqn

(uqnu<qN/2). All equations retain their original form with the
proviso that the infinite sums(n52`

` are now replaced by

finite ones(n52N/2
N/2 . This procedure thus assumes thatĥqn

50 for anyn.N/2, and the original continuum equation
then reduced to a set ofN11 real Langevin equations. Th
first one,
04610
e

o

g
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dĥq0

dt
5cL1

l

L (
n51

N/2

qn
2@âqn

2 1b̂qn

2 #1 ĵq0
, ~17!

governs the temporal evolution of the zeroth modeĥq0
and

depends onĥqn
for 0,n<N/2. The otherN real equations

are independent ofĥq0
and describe the time evolution o

âq1
,b̂q1

, . . . ,âqN/2
,b̂qN/2

:

dâqn

dt
5Fqn

@â,b̂#1 ĵqn
, ~18!

db̂qn

dt
5Gqn

@â,b̂#1 ẑqn
, ~19!

where

Fqn
@â,b̂#52nqn

2âqn
2

l

2L (
m,m852N/2

N/2

qmqm8@âqm
âqm8

2b̂qm
b̂qm8

#dn,m1m8 , ~20!

Gqn
@â,b̂#52nqn

2b̂qn
2

l

2L (
m,m852N/2

N/2

qmqm8@âqm
b̂qm8

1b̂qm
âqm8

#dn,m1m8 . ~21!

The philosophy underlying this regularization is akin to
renormalization group scheme in momentum space, wh
high wave vectors are integrated out above a cutoffqN/2 in
momentum space. This approximation is an alternative
albeit not equivalent—method to discretize, in real space,
width L into N11 independent points separated by a d
tancea5L/N. For the sake of simplicity, the numberN is
hereafter assumed to be a power of 2.

For the continuum linear counterpart—the E
equation—no approximations are involved in the framewo
of this spectral method, as equations for modesqn.qN/2 are
simply discarded. On the other hand, this approach is sh
to be far more useful than the real space Eqs.~3! and~4!, in
the nonlinear KPZ case, since unlike both approximatio
given in Eqs.~3! and~4! it preserves some basic properties
the original KPZ continuum equation as shown below.
deed, let us recall that, apart from a normalization factor,
steady state distribution of the continuum KPZ equation
given by

Ps@h#;expF2
n

2DE
2L/2

L/2

dx~]xh!2G . ~22!

The distribution of modesuqnu<qN/2 in momentum space
thus reads:

Ps@ ĥq1
, . . . ,ĥqN/2

#;expF2
n

2LD (
n52N/2

N/2

qn
2uĥqn

u2G .

~23!
2-3
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The zeroth modeĥq0
does not contribute to Eq.~23! since

the average value ofh(x,t) does not appear in Eqs.~22!,
meaning that the surface always grows and its average n
settles to a steady value, unlike the surface gradients.
note that both the original distribution Eq.~22! and its spec-
tral approximation Eq.~23! areindependentof l. As already
remarked in Ref.@10#, this property is not satisfied by th
finite-difference approximation Eq.~3!. This inconvenient
point is partly solved by the modification given in Eq.~4!,
which leads to the correct steady state distribution

Ps@h1 , . . . ,hN#;expF2
n

2Da (
j 51

N

~hj 112hj !
2G . ~24!

However, it has been shown in Ref.@12# that even the ap-
proximation given in Eq.~4! fails in the presence of coars
graining. This means that if fluctuating interfaces, obtain
by the numerical generation of a real space discretized K
equation at scalea, are smoothed out up to a scaleas.a,
these coarse-grained surfaces cannot be described by a r
malized KPZ equation atas . The origin of this problem can
be traced back to the form of the steady state distribu
~24! within a real space scheme. In contrast, our spec
discretization has been devised in such a way as to avoid
drawback~see below!, and can thus act as a safe starti
point for the reconstruction procedure.

Recalling that there are onlyN independent modes, th
Fokker-Planck equation governing the evolution of the pr
ability distribution P@â,b̂,t# associated with the Langevi
equations~18! and ~19! reads@8#

]P

]t
5 (

n51

N/2 F2
]~Fqn

P!

]âqn

2
]~Gqn

P!

]b̂qn

1
DL

2 S ]2P

]âqn

2
1

]2P

]b̂qn

2 D G .

~25!

One may then check that the steady solution~23! satisfies
Eq. ~25!. It is known@8# that, when such a steady probabili
exists, all time dependent distributions asymptotically co
verge toward it. The discretized KPZ equation thus preser
the particular symmetry of the continuum KPZ equation.
further advantage of this discretization is that surfaces co
grained at length scalesas.a can be simply obtained by
cutting out modes with wave number larger thanqNs/2

(Ns

5Na/as). From Eq. ~25!, it is straightforward to get the
steady probability of these coarse-grained surfaces, that
steady probability of the same form as Eq.~23! with N
5Ns and the sameD/n (L5Nsas). The coupled Langevin
equations~18! and ~19! ensure that, under coarse grainin
the exact steady state is recovered.

III. EVOLUTION EQUATIONS FOR CORRELATION
FUNCTIONS

Next we address the time dependent distribut
P@â,b̂,t# appearing in Eq.~25!. We first exhibit an evolu-
04610
er
e

d
Z

nor-

n
al
is

-

-
es

se

, a

,

n

tion equation for the ensemble average^âqn

2 &(t), and

^b̂qn

2 &(t),

^âqn

2 &~ t !5E DâDb̂âqn

2 P@â,b̂,t#, ~26!

^b̂qn

2 &~ t !5E DâDb̂b̂qn

2 P@â,b̂,t#, ~27!

where

DâDb̂5)
j 51

N/2

dâqj
db̂qj

. ~28!

Assume that the probability densityP@â,b̂,t# goes exponen-
tially to zero forâ,b̂ going to`. If the Fokker Planck equa
tion ~25! is multiplied by âqn

2 and then integrated over a

variables, one obtains, after an integration by parts,

d^âqn

2 &~ t !

dt
52E DâDb̂âqn

Fqn
@â,b̂#P@â,b̂,t#1DL,

~29!

and similarly forb̂qn

2 (t),

d^b̂qn

2 &~ t !

dt
52E DâDb̂b̂qn

Gqn
@â,b̂#P@â,b̂,t#1DL.

~30!

From the expressions~20! and ~21!, we then get forn.0

d

dt
^uĥqn

u2&522nqn
2^uĥqn

u2&2lVqn
12DL, ~31!

where

Vqn
5

1

L (
m,m852N/2

N/2

qmqm8R@^ĥ2qn
ĥqm

ĥqm8
&#dn,m1m8 ,

~32!

andR indicates that only the real part is considered. Eq
tion ~31! implies that

d

dt
g2~ t !522ng4~ t !2lK~ t !12DQ2 , ~33!

where

g2p~ t ![
1

L (
n52N/2

N/2

qn
2p^uĥqn

~ t !u2& ~34!

for p51,2, . . . and
2-4
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K~ t !5
1

L2 (
n,m,m852N/2

N/2

qn
2qmqm8R

3@^ĥ2qn
~ t !ĥqm

~ t !ĥqm8
~ t !&#dn,m1m8 , ~35!

Q25 (
n52N/2

N/2

qn
25

4

3
p2

N~N11!~2N11!

L2
. ~36!

In Appendix A it is shown that the termK(t) in Eq. ~33!
actually vanishes identically. Hence one is left with

d

dt
g2~ t !522ng4~ t !12DQ2 . ~37!

Therefore onlyn andD explicitly appear in the above equa
tion. The absence of the parameterl in Eq. ~37! is reminis-
cent of an analogous phenomenon appearing in the st
probability distribution~23! in the (111)-dimensional case
It is worth stressing that, although thel term does not ex-
plicitly appear in Eq. ~37!, it is nevertheless implicitly
present through the evolution ofg4(t).

Another equation can be obtained by averaging Eq.~17!:

d

dt
g0~ t !5cL1

l

2
g2~ t !, ~38!

where

g0~ t ![^ĥq0
~ t !& ~39!

This last relation does not explicitly involve either the noi
or the diffusion term.

IV. PSEUDOSPECTRAL METHOD FOR THE KPZ
EQUATION

A. Numerical procedures

In order to compare rough surfaces numerically genera
by various spatial discretizations of the KPZ equation,
introduce a one-step Euler scheme in time for the temp
discretization. This simple algorithm is used since, for s
chastic equations, it is known that a naive application o
two-step method can result in less computational efficie
@19#. In order to speed up the evolution of Eqs.~18! and~19!,
a pseudospectral method is used at each time step o
Euler scheme. This method efficiently computes the quan

x̂qn
52

l

2L (
m,m852N/2

N/2

qmqm8ĥqm
~ t !ĥqm8

~ t !dn,m1m8 ,

~40!

whose real and imaginary part are the nonlinear contri
tions of theN11 Langevin equations~18! and ~19!. In this
procedure, the quantityx̂qn

can be evaluated without explic
itly performing the double sum appearing in Eq.~40! for
eachn. First, the Fourier modes of the surface derivat
04610
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]xh(x,t) are obtained by simple algebraic multiplication
iqnĥqn

for 0<n<N/2. One then returns to real space,

]xh~x,t !5
1

L (
n52N/2

N/2

iqnĥqn
~ t !eiqnx, ~41!

to obtain the gradient at given spatial points. The compu
tion of (l/2)(]xh)2 is straightforward at these points. On
then exploits a Fourier transform again to go back to spec
space using the values of the nonlinear terms at these c
cation points. In order to prevent the aliasing proble
@14,20#, we suitably choose the range of the collocati
points and the number of Fourier modes to be used in su
way that the procedure provides the exactx̂qn

for 0<n

<N/2 of Eq. ~40!. The modes external to the range2N/2
<n<N/2 can be dropped since they do not enter in the
tual computations. This well-known technique~dealiasing
@14#!, albeit seemingly more complicated, turns out to
much more efficient than a brute force computation of E
~40!.

B. Comparison with real space discretization

We now compare the performance of the spectral discr
zation with the one based on the standard@Eq. ~3!# and modi-
fied @Eq. ~4!# real space discretization and with the corr
sponding analytical results obtained for the continuum K
equation. The surface is grown via the pseudospectral K
equations with a regularization at scalea. In these simula-
tions we have always used a Euler time step in the ra
1022– 1023, which is sufficiently small to avoid any numer
cal instability up to the sizes and for thel considered here.

In order to compare the performance of the pseudosp
tral method to that of real space discretization schemes,
apply a test akin to the one carried out in Ref.@11#. We
generate a steady state KPZ surface in (111) dimensions,
with lattice spacinga51, and parametersn51, l53, D
51, c50, by using~i! the standard real space discretizati
~3!, ~ii ! the real space discretization~4! introduced in Ref.
@11#, and ~iii ! our pseudospectral discretization. The stea
state roughnessW(L) obtained by the three methods fo
various sizesL is then compared with the exact value

W~L !5A D

12n
L1/2 ~42!

of the continuum KPZ equation@21#. Figure 1 shows that
unlike the standard real space representation~3! which un-
derestimates the ration/D (51 in the present case!, both the
modified real space representation~4! and the pseudospectra
representation yield, on average, the correct ratio. This is
surprise since we have previously shown that the ps
dospectral representation correctly accounts for the ste
state distribution properties, a feature not shared by the s
dard real space representation~3! @12#.

Figure 2 depicts the behavior ofg2(t) for a surface of size
L5256, flat att50, and averaged overN5500 independent
growths. The curve has a gradual increase~starting from
2-5
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zero! until it saturates after a characteristic timet`
c ;30 000

31023. This time, which depends upon the size of the s
tem, represents the crossover after which~i! all length scales
have saturated,~ii ! the velocity of the average height be
comes constant, and~iii ! the roughness levels off. From
renormalization group theory, one expects thatt`

c ;Lz where
the dynamical exponentz is equal to 3/2 for 111 dimen-
sions@2#.

In the spirit of renormalization group theory, let us sep
rate the dynamics of modes of wavelength shorter thanas
5ba with b52l from modes of wavelength longer thanas .
This can be done using the following decomposition
g2p(t) (Ns5N/b):

g2p~ t !5g2p
(b)~ t !1R2p

(b)~ t !, ~43!

with

g2p
(b)~ t !5

1

L (
n52Ns/2

Ns/2

qn
2p^uĥqn

~ t !u2& ~44!

representing the ‘‘slow’’ part, and

FIG. 1. c(L)5A12n/DLW(L) as a function of sizeL where
W(L) stands for the steady state roughness computed using
standard real space discretization Eq.~3!, the modified real space
discretization Eq.~4!, and the pseudospectral discretization given
Eqs.~18! and~19! for a one-dimensional KPZ equation. The dott
line corresponds to the exact continuum value given by Eq.~42!
(n/D51). Units here and below are arbitrary.
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R2p
(b)~ t ![

1

L (
n52N/2

2Ns/221

qn
2p^uĥqn

~ t !u2&

1
1

L (
n5Ns/211

N/2

qn
2p^uĥqn

~ t !u2& ~45!

indicating the ‘‘fast’’ part. In Fig. 3, the behavior ofg2(t),
g2

(b)(t), and R2
(b)(t) is plotted for a scalingb52. Before a

characteristic timet1
c (t1

c;35031023 for the parameters
chosen in the pseudospectral KPZ equations!, short-wave
modesNs/211<unu<N/2 contained inR2

(2)(t) are evolving
much faster than long-wave modes 0<unu<Ns/2. Similar
features occur for higher values ofb52l , thus defining a
sequence of characteristic timest1

c,t2
c,t3

c,•••. For in-
stance, it is found thatt2

c;130031023 and t3
c;3000

31023. The above remarks are clearly important when d
fining the dynamics of the coarse-grained surface obtai
by eliminating the modes of wavelength shorter than sc
as5ba52la. This surface is characterized by the same
erage heightg0

(b)5g0 for any b, andg2
(b)(t) playing the role

of g2(t). By rewriting Eq.~38! as

dg0
(b)~ t !

dt
5cF11

l

2L
R2

(b)GL1
l

2
g2

(b)~ t !, ~46!

it is clear that the coarse-grained surface withNs5N/b
modes will satisfy a KPZ equation with a renormalizedcs

and identicalls5l only whenR2
(b) has reached saturation

Starting from a flat interface, this happens whenever the F

he

FIG. 2. Temporal behavior ofg2(t) for KPZ growth on a one-
dimensional substrate of sizeL5256. The temporal axist is written
in terms of numbers of Euler time steps, here taken to be 1023.
2-6
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PSEUDOSPECTRAL APPROACH TO INVERSE PROBLEMS . . . PHYSICAL REVIEW E 63 046102
rier modesNs/2,n,N/2 and 2N/2,n,2Ns/2 are ther-
malized, i.e., fort.t l

c . Similarly, upon summing Eq.~31!
over the slow modesn51, . . . ,Ns/2, one finds that

dg2
(b)~ t !

dt
522ng4

(b)~ t !2l (
n52Ns/2

Ns/2

qn
2Vqn

12DQ2
(b) ,

~47!

where

Q2
(b)5 (

n52Ns/2

Ns/2

qn
2 . ~48!

For t>t1
c , it is assumed that the dynamics of fast modes

slaved to that of slow modes, in such a way that the term
l can be written as

l (
n52Ns/2

Ns/2

qn
2Vqn

52Dng4
(b)~ t !22DDQ2

(b) , ~49!

thus satisfying a coarse-grained KPZ equation with ren
malized parametersns5n1Dn and Ds5D1DD. For the
EW universality class, it is easy to show that, using Eq.~46!
and Eq. ~47!, none of the parameters renormalize, as
pected from renormalization group theory@5#.

Our purpose here is to compute the KPZ renormaliz
parameters directly from the experimental observations
the surface growth. According to the previous discussion,

FIG. 3. Temporal behavior of functionsg2(t), g2
(2)(t), and

R2
(2)(t) ~see text! for KPZ growth on a one-dimensional substrate

sizeL5256. The temporal axist is written in terms of numbers o
Euler time steps 1023.
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should begin collecting the data after a timet>t l
c ~starting

from an initially flat surface! in order to best characterize th
dynamics of a surface coarse grained by a factorb52l .
Moreover, the most prominent evolution of this surface o
curs during the time interval when the length scales betw
2as andas5ba are not thermalized, i.e., during the interv
@ t l

c ,t l 11
c #, which is then the optimal period to characterize

dynamics.

V. RECONSTRUCTION PROCEDURE BASED ON THE
SPECTRAL APPROXIMATION

Based upon the above spectral approximation, we n
introduce a method to identify, at a given length scale,
optimal set of KPZ effective coupling parametersc, n, l,
andD from ‘‘experimental’’ snapshots of interface profile
The ‘‘experimental’’ data may be generated by numeri
simulations of the KPZ equation itself~see tests in Sec. VI!
or by numerical microscopic models emulating surface p
cesses~Sec. VII! or they may be associated with real inte
face growth. For the sake of simplicity, measurements
always assumed free of observational noise. This appro
thus constitutes a typical inverse problem for an infinite~or
finite, but large, in the discretized approximation! dimen-
sional system with a finite number of parameters to ident
Although in this work we focus on the KPZ universalit
class, our method has a more general validity, and may
extended, with slight changes, to other universality class

A first reconstruction of KPZ dynamics was attempted
Lam and Sanders@18#. These authors used Eq.~3! and
worked in real space using experimental heightshi

obs(t)
measured atN points xj5 ja with j 51, . . . ,N. For the re-
construction, they performed a least-squares calculation
rectly on the Langevin equations to compute the parame
c, n, andl. The noise termD was eventually obtained as
by-product of the previous calculation. In Ref.@12#, the dif-
ficulties associated with this approach have already been
cussed. In the present work, the analysis is based on
philosophy explained in previous sections and Eq.~37!, @Eq.
~38!# is used to identify through a least-squares procedure
coefficientsn, D, (c,l). Besides the fundamental theoretic
features discussed in Sec. II, several reasons may be inv
in favor of our approach. First, this method is not direc
based on the primitive stochastic equations but uses the
terministic equations introduced in Sec. III which govern t
ensemble average of correlation functions. Standard iden
cation algorithms~e.g., the least-squares method!, which are
well suited and have been widely tested for determinis
equations, are expected to be more reliable under such
ditions. Second, as the functionsg2p(t) are already average
quantities, a smaller number of realizations is expected to
required due to the self-averaging property. Finally, dyna
cal noise is directly introduced in our reconstruction alg
rithm, unlike in that of Ref.@18#. This seems a natural re
quirement since noise is an intrinsic parameter of interf
evolution.

In order to get ensemble averages of spatial correlatio
N growths starting from the same surface, e.g., a flat surfa
have been carried out. This providesN distinct realizations
2-7
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of the same stochastic process. For a given realization,
experimental surface is observed at time (tk5kDt,k
51,2, . . . ,pM) where Dt is the measurement samplin
time. This procedure may be easily performed in a real
periment and leads to quantitiesg0(t), g2(t), and g4(t)
which are linked, at the scale considered, to the aver
height, the average of the square of the first or second sur
derivatives of the smoothed surface.

Let us now integrate Eq.~37! duringp sampling timesDt:

g2~Tk11!2g2~Tk!

Tk112Tk
522n

1

Tk112Tk
E

Tk

Tk11
g4~ t !dt

12DQ2 , ~50!

where timeTk5kpDt (k51, . . . ,M ). Similarly, from Eq.
~38! one gets

g0~Tk11!2g0~Tk!

Tk112Tk
5cL1

l

2

1

Tk112Tk
E

Tk

Tk11
g2~ t !dt.

~51!

If Dt is smaller than the characteristic time of the dynami
one may approximate the time integral in Eqs.~50! and~51!
as an average over thep intermediate sampling times
thereby obtainingM21 linear constraints on the paramete
n, D andc, l. A simple least-squares calculation then det
minesn, D from Eq. ~50! andc, l from Eq. ~51!.

VI. RESULTS FOR THE KPZ RECONSTRUCTION

In order to test our reconstruction method, we use
above procedure on rough surfaces generated throug
discretized KPZ equation with known coupling paramet
(n51, l53, D51, c50). Note that, in order to comput
the ensemble average valuesg0(t), g2(t), andg4(t), we use
N5500 samples to obtain a convergent value. This is imp
tant since statistical fluctuations may be large enough to
duce a measurement error exceeding the nonlinear cont
tions, and under such circumstances the identification wo
fail. Furthermore, each reconstruction is repeated for a sm
number of independent configurations~typically 5) in order
to get an estimate of the error bars associated with the re
structed parameters.

In the absence of coarse graining, data are produced
the discretized equations~17!–~19! where the minimum
length scalea5L/N is introduced by the spectral approx
mation. Since equations used in the reconstruction proce
are exactly identical to the ones generating the time se
this provides a first stringent test of the validity of o
method. For the original data, the most efficient inter
choice for performing the identification is expected to
@0,t1

c#. Indeed, aftert1
c , all length scales betweena and 2a

are thermalized and the contribution to the variation of
steady velocity stemming from the nonlinear term becom
less and less important@see Eq.~46!#. In this instance, the
inversion technique may run into difficulties in computingc
andl since statistical fluctuations in the computation of e
semble averages should not be greater than the value o
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nonlinear contribution, as mentioned above.
Such a procedure may be iterated for coarse-grained

faces atas5ba (b52l52,4, . . . )which are still assumed to
be governed by KPZ-like equations. The reconstruction
the renormalized equation should then be performed w
data taken aftert l

c since the renormalized equation is n
expected to be valid at earlier times. Once again, becaus
statistical fluctuations, we expect the most efficient inter
choice for the identification at length scaleas to be@ t l

c ,t l 11
c #.

Clearly the reconstruction becomes more and more diffic
to implement asb increases, since the time interva
@ t l

c ,t l 11
c # and the required statistics will correspondingly i

crease. Figures 4–6 depict the results for the three par
etersns , ls , andDs as a function of the scaling ratiob for
various lattice sizes~error bars are of the same order of ma
nitude as the symbol sizes and therefore not shown!. The
optimal value is then expected to correspond to theL→`
limit. For the scalea, one obtains the correct value, whic
shows that the method is capable of identifying the corr
parameter. For the coarse-grained case the extrapolated
ues ofl, as well as the ration/D, appear to be independen
of b ~as they should! while parametersn and D are renor-
malized@3#.

VII. RESULTS FOR GROWTH MODELS

The ultimate goal for our method is to be applied toreal
experimentalsurfaces. In this section, as an intermedia
step, the reconstruction technique is tested on data prod

FIG. 4. The coupling parameterns for various coarse-graining
levelsb52l and for increasing lattice sizes 2048, 4096, and 8192
the case of a numerically generated KPZ equation. The input v
is n51. Error bars are of the order of the symbol sizes.
2-8
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through numerical microscopic models. Specifically, we c
sider two typical models:~i! a random deposition model wit
surface diffusion~RDSD! which is described by the EW lin
ear continuum theory (l50); ~ii ! a particular solid-on-solid
model called single step 1~SS1! which is expected to belong
to the KPZ universality class. This latter model can
mapped onto an Ising model@21#, thus providing an analyti-
cal value of l and hence a further stringent test for o
method.

A microscopic growth model is composed of three ma
ingredients:~L1! a probabilistic law, independent of the su
face dynamics itself, which describes the flux of partic
directed toward the surface;~L2! a—deterministic or
probabilistic—rule that determines whether a given parti
directed toward the specific sites is effectively deposited (s
is an active site! or simply discarded (s is not active!; ~L3! a
prescription yielding the displacement of the particle or
rearrangement of the surface, after the deposition has
come effective.

Law ~L1!, characterizing the particle flux, defines th
mean time or the time scale necessary for a particle to
toward—but not necessarily be deposited on—the surface
principle, this law may be given by a probability varyin
with site location and may also be of intermittent nature.
this work, however, we consider the simplest case of unifo
flux in both space and time. During each time intervaldt,
which defines the time scale of the process, a unique par
falls on the surface with probability 1 and selects a given
s with equiprobability 1/N.

In order to compute the parameters, we use as space
the unit cell of the microscopic modela51 (L5N whereN

FIG. 5. The coupling parameterls for variousb and increasing
lattice sizes 2048, 4096, and 8192 in the case of a numeric
generated KPZ equation. The input value isl53.
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is the number of sites!. The unit of time is defined in such
way that dt51/N. In the following, we use sizes up toL
58192 withN550 independent growths.

A. The RDSD model

In the RDSD model, a particle directed toward the sp
cific site s is always deposited~L2!. This means that one
layer is deposited on the surface during a unit of time. L
~L3! can be phrased as follows. Upon reaching the surfa
the particle falling toward a specific sites compares the
heights of the nearby neighbors and sticks to the one of l
est height unless the original site is a local minimum~in that
case it does not move!.

We have generated a RDSD model starting from a
surface and performed coarse graining up tob516. The
sampling measurement timeDt is taken to be larger than th
time unit. We have consistently foundl;0 and c;1, as
expected. Moreover, we find values forn andD which, asb
increases, slowly converge ton;0.8 andD;0.5 ~we recall
thatc51 andD50.5 for a simple random deposition mod
with our time units!.

B. The SS1 model

For the SS1 model, an ‘‘active site’’ is defined@22# as a
site that is a local minimum for nearby sites, i.e., such t
hi,hi 21 andhi,hi 11 ~L2!. The~L3! rule for the SS1 mode
requires that two particles are deposited on the active s
Our algorithm has been devised to cover non-steady-s
conditions. Since this situation is hardly discussed in the

FIG. 6. The coupling parameterDs for various b and for in-
creasing lattice sizes 2048, 4096, and 8192 in the case of a num
cally generated KPZ equation. The input value isD51.

lly
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erature@3,22#, in Appendix B an efficient way of including
the time dependence in this model is reported. The samp
measurement timeDt is taken to be the unit of time. Not
that, unlike in the RDSD model, the time unit does not c
respond to the effective deposition time of one layer.

We have used a ‘‘toothlike’’ initial surface with odd an
even sites having heights 0 and 1, respectively~hence there
are N/2 active site at this stage! @22#. Reported in Fig. 7 is
the result for the rations /Ds for various scaling factorsb. As
b increases,ns /Ds tends to a constant characteristic of t
KPZ phenomenology forb>4. This is confirmed by Fig. 8
which depicts the results forls for b>4, displaying a ten-
dency forls→22.

A word of caution is in order here. As we discussed,
value ofl is exactly known through a mapping onto an Isi
model @21#. The predicted value isl521 when computed
with a time unit yieldingc51 at stationarity. This result is
consistent with ours since it corresponds to a time unit wh
is half of the one we have exploited (cs;0.5) ~see Fig. 9!.

VIII. CONCLUSION

In this work we have proposed a method for extracting
coupling parameters of the KPZ equation from experimen
snapshots of successive interface profiles. This met
hinges on two main ingredients. First, a pseudospec
scheme is used to simulate the KPZ equation, and
scheme can be reckoned as an improved discretization
respect to the standard real space finite-difference ones.
matter of fact, it preserves both the correct steady state
tribution and the coarse-graining properties of the cor
sponding continuum equation. Second, our reconstruction
gorithm is based on the time evolution of correlati

FIG. 7. The ratioR[ns /Ds for the SS1 growth model.
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functions. These functions do satisfy a deterministic evo
tion equation, allowing the use of standard least-squares
cedure to identify the coupling parameters. This second
gredient parallels the analogous one introduced in Ref.@12#,
which was, however, based on a real space representati

We first tested the overall procedure on numerically g

FIG. 8. The coupling parameterls for the SS1 growth model.

FIG. 9. The coupling parametercs for the SS1 growth model.
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erated KPZ profiles with known coupling parameters. O
scheme is capable not only of reproducing the correct par
eters in the absence of coarse graining but~unlike the previ-
ous attempt@12#!, also provides consistent and robust resu
for coarse-grained surfaces.

Next we applied our algorithm to microscopic mode
which more closely mimic experimental situations. In suc
case, a smoothing procedure is unavoidable in order to
scribe the surface in terms of a continuum evolution eq
tion, and it is a vital requirement to use an efficient a
reliable method under such conditions. Again, we were a
to reproduce the few known analytical results for these
croscopic growth models. Furthermore, some additional
timates of other parameters have also been given.

We remark that our method is of general applicability. F
instance, an extension to two-dimensional surfaces is not
pected to present major difficulties. Similarly, it could b
applied to determine stochastic equations emulating coa
grained equations of the Kuramoto-Shivashinski type wh
the universality class is still an open question@23#.
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APPENDIX A: PROOF THAT K„t…Ä0

We prove here that the quantityK(t) appearing in Eq.
~33! is actually zero. The proof is patterned after a simi
proof used to show that the steady state probability~23! is
independent ofl for a (111)-dimensional KPZ equation
Indeed, by a reflectionqn→2qn we obtain

K~ t !5
1

L2 (
n,m,m852N/2

N/2

qn
2qmqm8R^„ĥqn

~ t !ĥqm
~ t !ĥqm8(t)…&

3d0,n1m1m8 . ~A1!

The above quantity is invariant under a cyclic permutation
the indicesn,m,m8. Therefore it can be rewritten as
d.
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K~ t !5
1

L2 (
n,m,m852N/2

N/2
1

3
qnqmqm8@qn1qm1qm8#

3R^„ĥqn
~ t !ĥqm

~ t !ĥqm8(t)…&d0,n1m1m8 , ~A2!

which obviously vanishes.

APPENDIX B: TIME EVOLUTION OF THE SS1
DEPOSITION MODEL—AN EFFICIENT ALGORITHM

A naive simulation of the SS1 model would proceed
follows. During each time intervaldt, a unique particle is
dropped on the surface, and one checks whether it is fal
on an active or inactive site according to~L2!. If deposition
is attempted on an active site, according to law~L3! for SS1,
time is incremented and the particle is deposited. On
contrary, a particle directed toward an inactive site is d
carded but the time is nonetheless incremented. This pr
dure is very time consuming, however. Efficient algorithm
generating equilibrium surfaces in a fast way, simply co
sider active sites and do not take time into account. S
algorithms cannot be used here since~i! we have not reached
equilibrium and~ii ! we need to quantify the interface effec
tive time evolution. Therefore we next implement an im
proved algorithm providing the time evolution as well.

At time t5kdt, let us assume we know the numberNa(t)
of active sites of the surface and their respective positio
We then select, with equal probability, one of such act
sites, deposit a particle on it, and then perform the reorde
of the surface and the updating of the active sites. The
portant question is how long we have to wait to see
deposition event occur. The probability of deposition b
tweent and t1dt is a[Na(t)/N and the probability thatk
5t/dt time steps elapse before a deposition occurs isa@1
2a#k21. This law, of probability of time intervals is numeri
cally generated as follows. Intervals @u0 ,u1#,
@u1 ,u2#, . . . ,@uk ,uk11# are defined in@0,1# whereu050,
u15a, anduk115uk1a@12a#k, i.e.,uk512@12a#k. As-
sume that a numberb is chosen with equiprobability in the
interval @0,1#. If it lies in the interval@uk ,uk11#, then the
waiting time is given by (k11)dt.
er.
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